联系我们

地址:江苏省宜兴市高塍镇工业集中区

联系电话:0510-80309155

传真:0510-80309156

联系人: 任经理

联系电话: 13961563291

邮箱:2248319094@qq.com

QQ:2248319094


水质乐投平台净化设备
作者: admin 来源: 未知 发布时间:2020-11-21 16:08

  农村饮用水 管道供水,是以居民楼、住宅小区、办公楼宇、宾馆、学校等单位,采用以除氟设备,预处理设备,或(反渗透,超过滤,微孔过滤,树脂软化置换技术)为主的处理工艺,对农村地下水经过深度处理后,达到国家标准的饮用水,通过专用管网输送到各用户终端,用户打开水龙头便可直接饮用到口感甘醇的净化水。

  工艺过程主主要分为两部份,一部份是水处理系统,一部份为供水系统。在这里主要介绍水处理系统。

  整个水处理过程即对地下水进行深度处理,先通过除氟设备,再经过精滤过滤器过滤、或

  、臭氧杀菌等过程,去除水中有害重金属、有机物、细菌及病毒等杂质,使其成为优质饮用净化水通过专设的卫生管道直接送入每家每户,供居民使用。(供水是指对处理过的净水进行智能化向用户送水)

  全自动逆渗透纯水机是采用了目前国际上最为先进的逆渗透工艺原理制成的五级过滤纯净水设备。 原水经四道前置预处理滤芯过滤

  由于逆渗透膜的孔径仅0.0001微米, 一个细菌要缩小四千倍、传染性病毒也要缩小200倍以上才能通过,因此水中所有微细不纯的杂质、可溶性固体、细菌及病毒无法渗过高精度的逆渗透膜。

  逆渗透膜将水与其它杂质及污染物分离,有害物由浓水口自动排出,纯水经紫外线杀菌后进入不锈钢储水箱内备用。

  用户用水时打开水龙头纯水自动流出即可安全饮用。整个制水过程均为全自动,但原水压力低或压力桶水满时系统自动停机,压力恢复时自动开机无须人工操作。采用逆渗透技术制成的纯水是不含细菌、有害物质的活水,有良好的口感,具有较强的渗透力和溶解力,能活化细胞及内脏增强人体的免疫力。

  1 有效清除体内垃圾,具有很强的渗透力,溶解力,能够促进营养吸收和废物排泄,促进细胞新陈代谢,提高免疫功能。

  本工艺方案是以农村自然行政村户人口总数为设备流量要求,以系统运行可靠、经济合理为原则,采用相关设计标准和规范,结合我公司多年工程经验,以地下水为原水水源而编制的。

  该方案设计合理、运行稳定、产水的品质满足要求,并已在多项类似工程中得到应用及检验。

  设备具有安装方便、使用方便、操作方便、维护方便;运行稳定、节能、环保、自动化程度高。

  D 进口设备的制造工艺和材料应符合美国机械工程师协会(ASME)和美国材料试验学会(ASTM)的工业法规中涉及的标准或相当标准。

  乐投网站

  其它所使用的相关的国家及行业设计、施工、制造、验收标准应保证所执行的标准是现行最新的版本。

  1:新使用的泳池放满水后,先按每千吨水投加2Kg天使蓝的量加入池中(用5-10倍水稀释后加入)加好后过24小时在进行下一步处理。因为天使蓝会与消毒药反应生成沉淀物粘在磁片及缝隙处,不易除去。天使蓝每月投加1-2次,不要多加。(蓝矾--硫酸铜属重金属,有毒,建议最好不要使用)。

  2:加TCCA(三氯异氢尿酸钠),按每千吨水3-5Kg加消毒药(新水加倍)投药时要泼洒均匀并开启循环泵,两小时后检测余氯,如余氯低于0.5ppm再补加消毒药。每天都要加消毒药并检测,池水余氯不达标时应及时补加消毒药。新的国家标准为(0.2-1.0ppm)(CJ244-2007)。

  3: 调节水的PH值(PH值最好控制在7.4-7.6之间)加量以验水合测量到PH7.8-8.5为宜(因验水合测出结果要比实际值高一些)简单解决办法---PH低时投加臭氧粉可提高PH值。

  4:如水质浑浊或有颜色,水的浊度达不到标准时,需要加酵素澄清剂吸附解决,可以通过加药泵投加(效果不快)。如需迅速解决问题,可在池水中直接投加,按每100吨水200克投加,加酵素澄清剂时,先用50-100倍水稀释,直接泼洒与池中,开动循环泵1-2小时,静止8小时即可。如要长期保持可按每100吨水50克每天投加,酵素澄清剂为生物提取剂,无毒无二次污染可随时添加,并且可解决A、B液絮凝不彻底需人工吸污的问题。(新的国家标准浑浊度NTU小于1)。

  5:投加臭氧粉,臭氧粉可迅速杀灭水中的细菌、芽孢、病毒。还可以降解各种有机物、除味、脱色、去除氯臭,分解氯胺,同时能分解水中的油污,解决池壁粘滑等问题。加量按每100吨水50克投加。(臭氧粉在水中的半衰期为20分钟,建议开放前1小时投加)。

  注:A:天使蓝与消毒药不能同时加,否则会产生铜沉淀。 B:消毒药不能与碱同时投放,否则会降低消毒效果。 C:高浓度的臭氧对人体有害,建议投加量要小,最好与开放前1小时投加。

  泳池水变混浊时急救方法:每100吨水加500克酵素澄清剂,500克消毒药,(100倍水稀释直接泼洒水面)循环2小时静止即可。

  凝结水:水汽凝结形成的地下水称为凝结水。当地面的温度低于空气的温度时,空气中的水汽便要进入土壤和岩石的空隙中,在颗粒和岩石表面凝结形成地下水。 初生水:既不是降水渗入,也不是水汽凝结形成的,而是由岩浆中分离出来的气体冷凝形成,这种水是岩浆作用的结果,成为初生水。

  埋藏水:与沉积物同时生成或海水渗入到原生沉积物的孔隙中而形成的地下水成为埋藏水。

  孔隙水:疏松岩石孔隙中的水。孔隙水是储存于第四系松散沉积物及第三系少数胶结不良的沉积物的孔隙中的地下水。沉积物形成时期的沉积环境对于沉积物的特征影响很大,使其空间几何形态、物质成分、粒度以及分选程度等均具有不同的特点。

  裂隙水:赋存于坚硬、半坚硬基岩裂隙中的重力水。裂隙水的埋藏和分布具有不均一性和一定的方向性;含水层的形态多种多样;明显受地质构造的因素的控制;水动力条件比较复杂。

  岩溶水:赋存于岩溶空隙中的水。水量丰富而分布不均一,在不均一之中又有相对均一的地段;含水系统中多重含水介质并存,既有具统一水位面的含水网络,又具有相对孤立的管道流;既有向排泄区的运动,又有导水通道与蓄水网络之间的互相补排运动;水质水量动态受岩溶发育程度的控制,在强烈发育区,动态变化大,对大气降水或地表水的补给响应快;岩溶水既是赋存于溶孔、溶隙、溶洞中的水,又是改造其赋存环境的动力,不断促进含水空间的演化。

  上层滞水:埋藏在离地表不深、包气带中局部隔水层之上的重力水。一般分布不广,呈季节性变化,雨季出现,干旱季节消失,其动态变化与气候、水文因素的变化密切相关。

  潜水:埋藏在地表以下、第一个稳定隔水层以上、具有自由水面的重力水。潜水在自然界中分布很广,一般埋藏在第四纪松散沉积物的孔隙及坚硬基岩风化壳的裂隙、溶洞内。

  承压水:埋藏并充满两个稳定隔水层之间的含水层中的重力水。承压水受静水压;补给区与分布区不一致;动态变化不显著;承压水不具有潜水那样的自由水面,所以它的运动方式不是在重力作用下的自由流动,而是在静水压力的作用下,以水交替的形式进行运动。

  雨水收集系统,是指雨水收集的整个全过程,雨水收集主要包括四个主要方面:初期弃流---过滤---储存---回用。完成了这四个阶段,就是一个雨水收集的全过程,也就是雨水收集系统。

  雨水管道--截污管道--雨水弃流过滤装置--雨水自动过滤器--雨水蓄水模块--消毒处理--用水点

  工艺流程图说明:初期雨水经过多道预处理环节,保证了所收集雨水的水质。采用蓄水模块进行蓄水,有效保证了蓄水水质,同时不占用空间,施工简单、方便,更加环保、安全。通过压力控制泵和雨水控制器可以很方便地将雨水送至用水点,同时雨水控制器可以实时反应雨水蓄水池的水位状况,从而到达用水点。

  雨水收集的意义:可以达到节能减排,绿色环保,减少雨水的排放量,使干旱,紧急情况(如火灾)能有水可取。另外可以用到生活中的杂用水,节约自来水,减少水处理的成本。

  1、全自动自清洗过滤器底部带有离心盘,可以使水流产生旋涡,形成离心力,这样可以让固体颗粒远离过滤盘片,聚集在过滤器顶部,减少过滤器清洗频率。

  2、反洗时滤芯中央四根喷水柱切向喷水,打击盘片,使盘片旋转,让沾在盘片上的污物产生离心力脱离盘片,便于清洗,减少清洗时间。

  4、盘片直径较大,同等数量的盘片相对应过滤器过滤面积大,从而增加过滤能力。

  5、过滤器内腔结构符合水力学特点,具有流线型结构,可降低水流水头损失,减少能耗。

  6、独创的滤壳整体成型、加工技术,避免钢制滤壳焊接造成的各种滴漏;高强度球墨铸铁材料防腐性能极佳,延长了产品的使用寿命;

  8、可靠的智能化控制,过滤、清洗、排污自动化运行,实现无人看守,给水不间断;

  9、领先的产品结构功能设计,结构紧凑,过滤面积大,纳污量高,管路压损小,电源能耗低;

  13、过滤精度默认为 100 微米,且从 100 至 3000 微米可选,过滤面积大,纳污量高,用户可根据实际工况定制。

  14、清洗方式简单,且清洗循环电子监控,可实现自动清洗排污。全自动自清洗过滤器控制系统中的各参数均可调节。

  16、具有在清洗排污时不间断供水、无需旁路的特点,且清洗时间短,排污耗水量少,不超过总流量的 1%。

  普通石英砂 普通石英砂,即SiO29099% Fe2O30.060.02%,耐火度1750℃,外观部分大颗粒,表面有黄皮包囊。普通石英砂一般是采用天然石英矿石,经破碎,水洗,烘干,乐投平台二次筛选而成的一种水处理滤料;该滤料具有:无杂质,无校角,密度大,机械强度高,载污能力线使用周期长的特点,是化学水处理的理想材料。粒度范围5220目,可按用户要求粒度生产。主要用途:冶金,墨碳化硅,玻璃及玻璃制品,搪瓷,铸钢,水过滤,泡花碱,化工,喷吵等行业。 精制石英砂 又称酸洗石英砂,SiO29999.5% Fe2O30.005%,采用优质天然石英砂,经过精心挑选,精细加工而成。粒度范围10.5mm、0.50.1mm、0.10.01mm、0.010.005mm,可按用户要求加工。用途:制造玻璃,耐火材料,冶炼硅铁,冶金熔剂,陶瓷,研磨材料,铸造造型石英砂等方面,在建筑中利用其有很强的抗酸性介质浸蚀能力,制取耐酸混凝土及耐酸砂浆。 高纯石英砂 SiO299.599.9% Fe2O30.001%,采用优质天然石英石,经过精心挑选,精细加工而成。粒度范围10.5mm、0.50.1mm、0.10.01mm、0.010.005mm,可按用户要求加工。用途:制造玻璃,耐火材料,冶炼硅铁,冶金熔剂,陶瓷,研磨材料,铸造造型石英砂等方面,在建筑中利用其有很强的抗酸性介质浸蚀能力,制取耐酸混凝土及耐酸砂浆。(mm为亳米) 熔融石英砂 化学成份:SiO2 99.9-99.95% Fe2O3 5PPM-25PPM max Li2O 1-2PPM max Al2O3 20-30PPM max K2O 20-25PPM max Na2O 10-20PPM max (PPM为百万分之一单位)物理性能: 外观为无色透明块状,颗粒或白色粉末。 相对比重:2.21 ; 莫氏硬度:7.0 ; PH值:6.0 ;

  污水自入水口进入经过粗、细滤网过滤,然后流向出口。在过滤过程中,细滤网表面逐渐积累水中的杂质。形成过滤杂质层,由于杂质堆积在细滤网的内侧,因此在细滤网的内、外两侧就形成了一个压力差。当压差达到系统预设值时,自动清洗功能被启动,此间系统的供水不中断,反冲洗阀或者排污阀打开,污水由排污阀排出:此时液压马达室及集污器内的压力大幅下降,由此通过吸咀吸污总成开始吸污过程:此时同样一股很强的反冲洗水流向外部,吸咀上产生一股吸力再加上水流经过液压马达时,由于液压活塞压力下降,带动集污器绕轴进行旋转做轴向运动将整个细滤网内表面完全清洗干净。整个自清洗过程约10~15秒。

  污水由设备的入水口进入机内,粗滤网先对污水中的体积较大的杂质进行拦截,防止这些杂质进入机体内部后损坏机体内的部件。粗滤后水流向机体另一端的细滤网,细滤网对水中的杂质及污物进行最后的拦截。

  因为污垢对滤网的堵塞使滤网中的水和滤网外的水有的压力差,当这个压力差达到压差开关的设定数值时,电控盒内的的水利控制阀、电机驱动、机体上的排污阀同时打开。电机转动带动机体内的不锈钢刷对滤网上的污垢进行清理,再通过排污口排出污水 。

  雨水作为一种非传统水源,曾被作为灾害加以防治,现在雨水已经成为一种重要的可用水资源,成为缓解水资源紧张状况的重要水源之一,雨水利用是一种资源的开发和节约,以整个城市生态环境的改善有着极其重要的意义。

  目前应用的雨水利用技术可分为以下几大类:分散住宅的雨水收集利用中水系统:建筑或小区集中式雨水收集利用中水系统;分散式雨水渗透系统;集中式雨水渗透系统;屋顶花园雨水式利用系统;生态小区雨水综合利用系统(屋顶花园、中水、渗透、水景)等。

  规划地块内,设计希望通过结合场地中的雨水系统,污水系统与环保节能技术的结合来达到景观的可持续发展。

  汇集地面径流及渗透的雨水作为水源,并以水泵提升向系统供水。区域内的绿化灌溉用水采用区域内中水给水系统。场地冲洗、道路清扫用水、水景补水等采用区域内中水给水系统。由集水井内水泵提升供给。

  区域内地面径流雨水经拦截、收集并进行处理,然后进入蓄水集水井中作为中水回用或进入水体,既可避免地面径流的雨水对水体的污染,又可以实现水资源的可持续利用。

  活性炭、磺化煤、沸石、焦炭等都是水处理常用的吸附剂,活性炭经过活化后碳晶格形成形状和大小不一的发达细孔,大大增加比表面积,提高吸附能力。活性炭的细孔有效半径一般为1-10000nm,小孔半径在2nm以下,过渡孔半径一般为2-100nm,大孔半径为100-10000nm.小孔容积一般为0.15-0.90mL/g,过渡孔面积一般为0.02-0.10mL/g; 大孔容积一般为0.2-0.5mL/g[3].

  活性炭是一种很细小的炭粒,有很大的表面积,而且炭粒中还有更细小的孔毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触。当这些气体(杂质)碰到毛细管被吸附,起净化作用。活性炭的表面积研究是非常重要的,活性炭的比表面积检测数据只有采用BET方法检测出来的结果才是 真实可靠的,国内有很多仪器只能做直接对比法的检测。现阶段国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看中国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法) ,更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。

  ⑴粒度:采用 一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。

  ⑵静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。

  ⑶体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。

  这些机械性质直接影响活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影响活性炭使用寿命和废炭再生。

  活性炭的吸附除 了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。

  活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含有的氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。

  活性炭过滤器是将水中悬浮状态的污染物进行截留的过程,被截留的悬浮物充塞于活性炭间的空隙。滤层孔隙尺度以及孔隙率的大小,随活性炭料粒度的加大而增大。即活性炭粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,活性炭滤层孔隙越大,水中悬浮物越能被更深地输送至下一层活性 炭滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,机组截污量增加。 从严格的理论上讲,活性炭所具有的对悬浮物的截留能力来自活性炭所提供的表面积。流速低时,机组的过滤要地来自活性炭的筛除作用,而流速快时,过滤能力来自活性炭颗粒表面的吸附作用,在过滤过程中活性炭所提供 的颗粒表面积越大,对水中悬浮物的附着力越强。

  根据吸附过程中,活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类:物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附; 当活性炭分子和污染物分子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。

  由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物 理吸附和化学吸附的根本区别在于产生吸附键的作用力。

  吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。

  活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有卓越的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成 染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有独特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。

  吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引 起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响。吸附量随水温的升高而减少。

  活性炭在环境保护 ,工业与民用方面己被大量使用,并且取得了相当的成效,然而活性炭在吸附饱合被更换后,使用单位均将其废弃,掩埋或烧掉,造成资源的浪费和对环境的再污染。活性炭吸附是一个物理过程,因此还可以采用高温蒸汽将使用过的活性炭内之杂质进行脱附,并使其恢复原有之活性,以达到重复使用的目的,具有明显的经济效益。再生后的活性炭其用途仍可连续重复使用及再生。随着活性炭的应用范围日趋广泛,活性炭的回收开始得到了人们的重视。如果用过的活性炭无法回收,除了每吨废水的处理费用将会增加0.83~0.90元外,还会对环境造成二次污染。因此,活性炭的再生具有格外重要的意义。

  热再生法是应用最多,工业上最成熟的活性炭再生方法。处理有机废水后的活性炭在再生过程中,根据加热到不同温度时有机物的变化,一般分为干燥、高温炭化及活化三个阶段。在干燥阶段,主要去除活性炭上的可挥发成分。高温炭化阶段是使活性炭上吸附的一部分有机物沸腾、汽化脱附,一部分有机物发生分解反应,生成小分子烃脱附出来,残余成分留在活性炭孔隙内成为“固定炭”。在这一阶段,温度将达到800~900C,为避免活性炭的氧化,一般在抽真空或惰性气氛下进行。接下来的活化阶段中,往反应釜内通入CO2、CO、H2或水蒸气等气体,以清理活性炭微孔,使其恢复吸附性能,活化阶段是整个再生工艺的关键。热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外加能源加热,投资及运行费用较高。

  生物再生法是利用经驯化过的细菌,解析活性炭上吸附的有机物,并进一步消化分解成H2O和CO2的过程。生物再生法与污水处理中的生物法相类似,也有好氧法与厌氧法之分。由于活性炭本身的孔径很小,有的只有几纳米,微 生物不能进入这样的孔隙,通常认为在再生过程中会发生细胞自溶现象,即细胞酶流至胞外,而活性炭对酶有吸附作用,因此在炭表面形成酶促中心,从而促进污染物分解,达到再生的目的。生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。

  在高温高压的条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法,称为湿式氧化再生法。实验获得的活性炭最佳再生条件为:再生温度230C,再生时间1h,充氧pO20.6MPa,加炭量15g,加水量300mL。再生效率达到(455)%,经5次循环再生,其再生效率仅下降3%。活性炭表面微孔的部分氧化是再生效率下降的主要原因。 传统的活性炭再生技术除了各自的弊端外,通常还有三点共同的缺陷:⑴再生过程中活性炭损失往往较大;⑵再 生后活性炭吸附能力会有明显下降;⑶再生时产生的尾气会造成空气的二次污染。因此,人们或对传统的再生技术进行改进,或探索全新的再生技术。

  溶剂再生法是利用活性炭、溶剂与被吸附质三者之间的相平衡关系,通过改变温度、溶剂的pH值等条件,打破吸附平衡,将吸附质从活性炭上脱附下来。 溶剂再生法比较 适用于那些可逆吸附,如对高浓度、低沸点有机废水的吸附。它的针对性较强,往往一种溶剂只能脱附某些污染物,而水处理过程中的污染物种类繁多,变化不定,因此一种特定溶剂的应用范围较窄。

  电化学再生法是一种正在研究的新型活性炭再生技术。该方法将活性炭填充在两个主电极之间,在电解液中,加以直流电场,活性炭在电场作用下极化,一端成阳极,另一端呈阴极,形成微电解槽,在活性炭的阴极部位和阳极部位 可分别发生还原反应和氧化反应,吸附在活性炭上的污染物大部分因此而分解,小部分因电泳力作用发生脱附。该方法操作方便且效率高、能耗低,其处理对象所受局限性较小,若处理工艺完善,可以避免二次污染。

  实验结果表明,电化学再生活性炭具有较高的再生效率,可达到90%。此外,对工艺参数的研究表明,再生位置是活性炭再生工艺中最重要的影响因素,电解质NaCl浓度是较重要的影响因素,再生电流和再生时间对活性炭的电化学再生 也有一定的影响。

  据最近的研究资料表明,在CO2的临界点附近,再生效率的变化很大;对未被烘干的活性炭,则需要延长其再生时间。对氨基苯磺酸而言,CO2超临界流体法再生的最佳温度为308K,当温度超过308K时,再生不受影响;当流速大于1.47×10-4m/s时,流速不影响再生;用HCl溶液处理后,会使活性炭再生效果明显改善。对苯而言,再生效率 在低压下随温度的下降而降低;在16.0MPa压力时的最佳再生温度为318K;在实验流速下,再生效率会随流速加快而提高。

  由于活性炭 热再生需要将全部活性炭、被吸附物质及大量的水份都加热到较高的温度,有时甚至达到汽化温度,因此能量消耗很大,且工艺设备复杂。其实,如在活性炭的吸附表面上施加能量,使被吸附物质得到足以脱离吸附表面,重新回到溶液中去的能量,就可以达到再生活性炭的目的。超声波再生就是针对这一点而提出的。超声再生的最大特点是只在局部施加能量,而不需将大量的水溶液和活性炭加热,因而施加的能量很小。

  研究表明经超声波再生后,再生排出液的温度仅增加2~3℃。每处理1L活性炭采用功率为50W的超声发生器120min,相当于每m3活性炭再生时耗电100kWh,每再生一次的活性炭损耗仅为干燥质量的0.6%~0.8%,耗水为活性炭体积的10倍。但其只对物理吸附有效,再生效率仅为45%左右,且活性炭孔径大小对再生效率有很大影响。

  微波辐照再生法是在热再生法基础上发展起来的活性炭再生技术。其原理是以电为能源,利用微波辐照加热实现再生。试验中的最佳再生效率出现在功率为HI(W),辐照时间约为80s时。比较极差S可知,对再生后活性炭碘值恢复影 响最大的是微波功率,其次是辐照时间,最后是活性炭的吸附量。微波辐照法再生活性炭的时间短。能耗低、设备构造简单,具有较好的应用前景。然而,在微波加热使有机物脱附过程中,是否有其它的中间产物产生等问题还有待于进一步研究。

  传统湿式氧化法再生效率不高,能耗较大。再生温度是影响再生效率的主要原因,但提高再生温度会增加活性炭的表面氧化,从而降低再生效率。因此,人们考虑借助高效催化剂,采用催化湿式氧化法再生活性炭。同济大学水环境控制与资源化研究国家重点实验室的科研人员正在开展此方面的研究。随着可持续发展观念的深入人心,活性炭再生工艺与技术日益得到人们的重视。一些传统的活性炭再生技术与工艺在近几年有了新的改进与突破。同 时新再生技术也在不断涌现。虽然这些新兴技术在工艺路线上还不成熟,尚无法投入工业使用。但它们的出现为活性炭的再生带来了新思路与新探讨。

  也叫做气体活化,此过程是将炭化产物于高温(800-950℃),通以水蒸气、二氧化碳或空气与炭质做选择性炭的氧化,以清除堆积在孔洞的反应生成物。

  化学活化系将原料炭与活化剂直接调和、炭化与活化同时进行反应,此种方法能产生较少炭氢化合物或氧化物,但化学活化剂之污染与回收则是另一项需要考虑的问题。目前常用的活化剂有氯化锌及磷酸。

  催化剂载体(钯、铂、铑等)苯乙烯、连续重整装置

  香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等,比如活性炭可以作为活性碳罐的填充物用来生产摩托车碳罐 汽车碳罐等。